
Rotten Apples Spoil the Bunch: An Anatomy of Google Play
Malware

Michael Cao∗
Univ. of British Columbia, Canada

michaelcao@ece.ubc.ca

Khaled Ahmed∗
Univ. of British Columbia, Canada

khaledea@ece.ubc.ca

Julia Rubin
Univ. of British Columbia, Canada

mjulia@ece.ubc.ca

ABSTRACT

This paper provides an in-depth analysis of Android malware that
bypassed the strictest defenses of the Google Play application store
and penetrated the official Android market between January 2016
and July 2021. We systematically identified 1,238 such malicious
applications, grouped them into 134 families, and manually ana-
lyzed one application from 105 distinct families. During our manual
analysis, we identified malicious payloads the applications exe-
cute, conditions guarding execution of the payloads, hiding tech-
niques applications employ to evade detection by the user, and
other implementation-level properties relevant for automated mal-
ware detection. As most applications in our dataset contain multiple
payloads, each triggered via its own complex activation logic, we
also contribute a graph-based representation showing activation
paths for all application payloads in form of a control- and data-flow
graph. Furthermore, we discuss the capabilities of existing malware
detection tools, put them in context of the properties observed in
the analyzed malware, and identify gaps and future research direc-
tions. We believe that our detailed analysis of the recent, evasive
malware will be of interest to researchers and practitioners and
will help further improve malware detection tools.

CCS CONCEPTS

• Software and its engineering→ Software testing and debug-

ging; • Security and privacy → Software reverse engineering;
Software security engineering.

KEYWORDS

Android, malware, dataset, malware detection, manual analysis
ACM Reference Format:

Michael Cao, Khaled Ahmed, and Julia Rubin. 2022. Rotten Apples Spoil the
Bunch: An Anatomy of Google Play Malware. In 44th International Confer-
ence on Software Engineering (ICSE ’22), May 21–29, 2022, Pittsburgh, PA, USA.
ACM,NewYork, NY, USA, 13 pages. https://doi.org/10.1145/3510003.3510161

1 INTRODUCTION

The popularity of mobile phones has increased rapidly in the past
decade. Together with the increased popularity, their wide adoption
∗Equal contribution

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA
© 2022 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-9221-1/22/05. . . $15.00
https://doi.org/10.1145/3510003.3510161

greatly stimulated the growth of mobile malware. Understanding
the characteristics of such malware is an important step towards
building effective malware detection tools.

While a number of Android malware datasets were collected in
recent years, e.g., [30, 32, 36, 61, 65, 93, 97, 108], only a few authors
performed a detailed manual analysis to identify and describe the
mechanisms employed by malicious applications (a.k.a. apps). The
most prominent of these works are the Malware Genome [108] and
AMD [97] projects. In the former, the authors collected and manu-
ally analyzed 1,260 Android malware apps from official and alterna-
tive markets, focusing on identifying payloads, installation mecha-
nisms, and activation conditions for malicious behavior. Later, the
authors of AMD performed a similar manual analysis on 405 apps
from 135 distinct malware families. These two annotated datasets,
collectively, cover the time period between 2010 and 2016. Yet, to
the best of our knowledge, no such detailed analysis was conducted
since then for newer malware apps.

To address this gap, we collect and manually analyze a set of
difficult to detect malware apps that penetrated the official An-
droid Google Play store between January 2016 and July 2021. The
Google Play store arguably has the most advanced defenses for An-
droid apps, considering the low amount of malware that it contains
compared with alternative markets [24, 109]. We thus believe that
analyzing the mechanisms which allowed this malware to avoid
detection by the store is a valuable direction which will help further
improve both academic and industrial malware detection tools.

To collect malware apps, we systematically analyzed threat re-
ports of the 19 most prominent mobile security companies accord-
ing to Gartner [53], identifying reports that describe malware which
penetrated the Google Play app store during our target dates. We
identified 1,238 apps, grouped them into 134 families, and analyzed
one app per family from 105 distinct families; we could not analyze
apps from the remaining families due to obfuscation, encryption,
etc. We refer to the collected dataset as Google Play (GP) malware.

Our malware analysis focused on collecting detailed informa-
tion about malware implementation strategies and mechanisms it
uses to avoid detection. In addition, as malware often has multiple
payloads, each triggered under (potentially multiple) complex ac-
tivation conditions, e.g., that rely on combination of sensor data
and random events, we defined a flow-based malware signature: a
graph-based representation showing activation paths and payloads
for an app in a form of a control- and data-flow graph. We then
manually generated flow-based signatures for the analyzed apps.
We believe such signatures are useful to gain a proper understand-
ing of malicious behaviors, which is required for building effective
detection tools, e.g., those based on dynamic analysis [75, 90, 98]
or static execution-path exploration [101, 102].

To present our findings, we organize malware analysis results
around two main research questions:

https://doi.org/10.1145/3510003.3510161
https://doi.org/10.1145/3510003.3510161

ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA Michael Cao, Khaled Ahmed, and Julia Rubin

RQ1 (Malware Characteristics): What are the characteristics of
the GP malware and how does it compare with prior findings?
RQ2 (Malware Flow Behaviors): How complex are the control-
and data-flow behaviors implemented by the GP malware?

We then discuss our malware analysis results w.r.t. the capabili-
ties of existing malware detection tools and identify possible gaps
and future research directions.

Our analysis identifies new payloads not discussed in prior work,
such as clipboard hijacking and cryptomining. Interestingly, some
of these payloads do not rely on any platform-specific APIs, typi-
cally used as an “anchor” by many malware detection approaches.
For example, cryptomining can be performed by using simple math-
ematical operations only. We also identify new malware activation
conditions, e.g., checking for device temperature (to decide when it
is appropriate to mine cryptocurrency), and sophisticated combi-
nations of multiple events and conditions required for a payload
to execute, e.g., sensitive information is retrieved when a phone
call is received, stored in a file, and then released on a completely
different event, e.g., when another app is installed. Triggering a
subset of these events, or even all events but in a different order,
will prevent dynamic analysis tools from detecting the malicious
behavior. Finally, our analysis shows that some payloads spawn
bytecode, JavaScript, and native code, e.g., obtain data in aWebView
while leaking it via an Android Java API. Existing tools need to be
augmented to track such cross-technology patterns.
Contributions. Our work identifies characteristics and precise
flow-based signatures of contemporary malware. It can be used
to inform software engineering and security communities who
develop efficient malware detection tools and also as a benchmark
for evaluating such tools. More specifically, this paper contributes:

1. A systematically collected set of 1,238 Android malware apps
from 134 distinct malware families, which bypassed Google Play
defenses between January 2016 and July 2021. To the best of our
knowledge, this is the first confirmed dataset of such malware.

2. Detailed reports from the manual analysis of one sample from
each of the 105 distinct families, as well as aggregated findings and
a comparison of malware characteristics with those from earlier
years [97, 108], to identify new and obsolete practices (Section 3).

3. Flow-based signatures for each analyzed malware sample,
which include per-flow conditions that guard each payload and the
location/language of each flow element (Section 4).

4. A categorization and analysis of existing malware detection
tool capabilities, and a discussion on gaps and future research di-
rections in context of our collected malware dataset (Section 5).
Data Availability. We responsibly share the collected dataset and
our analysis results in an online appendix [35]; the latest citable
release can also be found online [34].

2 METHODOLOGY

In this section, we describe our methods for building the dataset
and analyzing the malicious samples.

2.1 Building the Dataset

Typically, malware apps are collected by either browsing blogs of
security companies [97, 108] or by screening apps found in public
repositories [93]. Such screening relies on antivirus scanners, e.g.,

6,112 security blog posts

Post Categories #

Google Play Malware 314

Alternative Markets Malware 356

Non-Android Malware 1,304

Technology/News/Promotions 4,138

Posts w. Malware
Indicators

#

2016 29

2017 66

2018 41

2019 38

2020 16

2021 27

Total 217

Identified
Families

#

2016 27

2017 59

2018 41

2019 34

2020 16

2021 7

Total 184

Identified
Apps (Families)

#

2016 89 (20)

2017 636 (47)

2018 301 (28)

2019 166 (21)

2020 35 (13)

2021 11 (5)

Total 1238 (134)

Manually
Analyzed Samples

#

2016 13

2017 34

2018 27

2019 17

2020 11

2021 3

Total 105

Google Play
Malware Posts

#

2016 56

2017 96

2018 51

2019 48

2020 24

2021 39

Total 314

AV
≥5

Figure 1: Malware collection process

from the VirusTotal [92] online service, which offers more than
70 different scanners. In our work, we chose the former approach,
because blogs of security companies already provide useful (albeit
partial) information about malware characteristics, which can assist
our manual analysis and help ensure the results are accurate.

We started from a list of 21 security companies reported on Gart-
ner’s Magic Quadrant for Best Endpoint Security Platforms [53],
identifying, for each company, blog sites related to cyber-threat
intelligence; we found such sites for 19 companies. For each site,
we extracted blog posts describing Android Google Play malware
using the following search terms: (“Android” | “Google” | “Play-
store” | “Play” | “Store”) and (“malware” | “malicious” | “malice”). We
limit our search to the time period between January 2016 and July
2021, as we are interested in augmenting the body of knowledge
collected in prior studies, which looked at earlier periods. To make
our search approach repeatable and reproducible, we implemented
an automated web crawler, which is available online, together with
the full list of companies and their blogs sites [35].

Running our crawler in July 2021 resulted in 6,377 blog posts, out
of which we discarded 265 where the main part of the text was not
written in English. Two authors of the paper then independently
read the remaining 6,112 posts and classified each post based on
its content. We arrived at four categories of posts: Google Play
Malware, Alternative Markets Malware, Non-Android Malware,
and Technology/News/Promotions. The categorization lists were
cross-validated and all disagreements (on 68 posts, 1.07%) were
resolved through a discussion with all authors of this paper. The
number of blog posts for each category is shown in our schematic
representation of the data collection process in Figure 1.

We further focused only on posts from the first category: 314
posts describing malware from the Google Play store. The distri-
bution of Google Play malware blog posts per year is described
in Figure 1. For each post, we looked for indicators of apps de-
scribed in the post: (1) file hash (SHA-1/SHA-256/MD5), which is
a unique identifier of an app, (2) app package name, which is the
name identifier of an application, and (3) author and app name,
which is the information presented to the users. We discarded 97
posts containing none of these indicators.

Rotten Apples Spoil the Bunch: An Anatomy of Google Play Malware ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA

Analyzing the remaining 217 posts, we observed that a post can
describe apps from one or more malware families, e.g., an ESET
post [42] describes three families: apps that mine cryptocurrency
after a preset period of time, apps that phish for cryptocurrency cre-
dentials, and apps that fake cryptocurrency mining functionality to
aggressively push ads onto the user. It is also possible that families
described by two different posts refer to malware from the same
family, i.e., by posts referencing each other directly or describing
indicators pointing to the same apps. We identified 235 malware
families in total, out of which 51 were duplicates, resulting in 184
unique families. Blog posts provided the names for families in a ma-
jority of cases (95%). For the remaining cases, we used AVClass [79]
and assigned names based on AVClass labels. The distribution of
posts with malware indicators and malware families per year is
given in Figure 1.

Next, we collected apps for each of the identified families by
scanning the VirusTotal Academic [92], Virus Share [81], and Con-
tagio [70] malware repositories, Android alternative markets, such
as APKMonk [28] and APKPure [29], and AndroZoo [24] – a pop-
ular repository with over 9.5 million Android apps from various
markets. Our assumption was that these repositories may still con-
tain the app even though it was already removed from the official
store. We prioritized apps found directly by the file hash. If we
could not find such apps, we searched using the app package name,
app name, and author names, and prioritized apps having a file
hash identical to the one reported by the blog post. For cases when
the post did not provide the hash, we uploaded the identified app
to VirusTotal and ensured the app was flagged as malicious by the
same antivirus company that published the blog post and in the
same family as reported in the post. If we could not verify the app,
we marked it as not found.

At the end of this process, we collected a total of 1294 identifiable
apps from 180 blog posts. We further exclude apps marked by fewer
than 5 antivirus tools, to ensure our collected dataset is reliable [32].
This eliminated 56 apps (4%), resulting in a dataset of 1,238 from
134 unique families. The distribution of retrieved apps per year is
also given in Figure 1.

2.2 Analyzing Malware Samples

We first selected 20 malware families and one sample app per fam-
ily at random; two authors of this paper manually analyzed the
selected samples to arrive at a common, reliable, and reproducible
analysis methodology. The analysis reports were discussed and aug-
mented by all authors of the paper in a number of joint meetings.
The remaining families were analyzed by the two authors individu-
ally while regularly validating each other’s findings. The summary
reports were discussed with all the authors and augmented, when
needed.

Similar to Wei et al. [97], we used both focused and exploratory
analysis of sample apps. In focused analysis, we read the blog post
to obtain a high-level description of the malware in plain human
language, noticing all malicious behaviors described in the post.
We then decompiled the app using JADX [83] to collect decoded
resources, Java source code, and native binaries, and attempted to
map the described behavior to Android implementation mecha-
nisms. For example, if the post stated that the malware “subscribes

to premium numbers”, we looked for Android API calls to an-
droid.telephony.SmsManager::sendTextMessage(). Once we located
the API in the app, we performed manual backwards reachabil-
ity analysis to identify paths leading to the payload; we further
analyzed all components found along the execution path.

We complemented focused analysis with an exploratory anal-
ysis to understand the overall workflow of the application and to
find additional unexpected behaviors. We observed that malicious
payloads are often triggered in response to system events, e.g., boot
completed or phone unlocked, likely because malware developers
attempt to avoid detection by moving the payload execution away
from the app main execution path while still ensuring the payload
is triggered. We thus thoroughly explored code triggered by system
and user events, in addition to the app main launch activity.

Some malware apps utilize native code, web assets, and/or byte-
code executables found in application resources. We treated these
files as an extension of the application code, analyzing them to-
gether with the main code of the app. We used IDA disassem-
bler [76] to reverse engineer native binaries and convert machine
code to human-readable assembly code. We used IntelliJ IDE [54],
which supports multiple programming languages, to perform addi-
tional analysis tasks, such as class hierarchy analysis.
Dealing with anti-analysis techniques. Surprisingly, only less
than half of the malware in our dataset used renaming as an ob-
fuscation technique (i.e., producing package, method, and variable
names like a.a and a.b). While APIs of the Android framework
methods, such as registering for an event or opening an HTTP con-
nection, cannot be obfuscated, obfuscation of application-specific
code complicates analysis. We used JADX’s built-in deobfuscation
functionality to map obfuscated names to more readable unique
identifiers, which simplified the analysis of the code.

Some of the malware apps used off-the-shelf and custom mecha-
nisms to encode and later decode Strings comprising reflective calls
and network addresses. We followed the logic implemented in the
source code of the apps and re-implemented the routine to decrypt
the data outside of the application. In a few cases where we could
not fully understand the particular routine, we instrumented the
application to print out the decrypted Strings.

In addition, several apps used Android packers, which encrypt
DEX files using ELF binaries [64] and decrypt them at runtime, to
increase the difficulty of reverse engineering the application [107].
In cases where malware apps used commercial packers, e.g., Ji-
agu [55] and Bangcle [99], we were able to decrypt DEX files of
these apps using Android Unpacker [85] and DrizzleDumper [38].

Furthermore, some apps used encryption/decryption mecha-
nisms to obfuscate Strings, asset files, and code files loaded from
local storage. In the majority of the cases, we could identify the
decryption key, which was simply stored in the APK file.
Dependence on external code/data. Several apps hide malicious
functionality in code downloaded from external sources, e.g., the
developer’s backend servers. Once the malware is discovered, Inter-
net Service Providers shut down its backend server permanently.
As we could not access these servers and analyze the malicious
behavior of the downloaded code, we borrowed the description
of its payloads from the corresponding blog post. We explicitly
marked (with ⋆) such payloads, to differentiate them from those we

ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA Michael Cao, Khaled Ahmed, and Julia Rubin

System

User

Scheduling

Event Conditions (EC)

Device

Environment

Application

Check Conditions (CC)

Hiding Techniques (H)

Payloads (P)

Code Properties (CP)
Location

Language

M
al

w
ar

e
C

h
ar

ac
te

ri
za

ti
o

n

External Server

Figure 2: Malware characterization schema

have observed independently. For 16 apps, the description of all app
payloads relied on the blog posts; in 24 additional cases, part of the
payloads was observed independently and part was inferred from
posts. For another 16 cases, no adequate description of a payload
was given in the post and we marked it as unknown.
Analysis Report. Overall, we were able to successfully analyze
at least one app from 105 distinct malware families. We excluded
four families where we could not identify the malicious behavior
described in the blog post, nine families whose apps used a com-
mercial packer we could not unpack, nine families whose apps were
heavily obfuscated and we could not reliably analyze, five families
whose apps relied on reflective calls we could not track, and two
families whose apps contained strings that were encrypted with a
custom encryption key that was dynamically downloaded from the
app backend server and was no longer functional at the time of our
analysis. The detailed breakdown of the apps we analyzed per year
is given in Figure 1.

At the end of the analysis, we produced a detailed report for each
app, describing (a) app meta-information, including the file hash,
blog URL, and a brief description of the malware’s behavior, (b)
the relevant source code related to the execution path(s) required
to activate the payload(s), (c) a tabular-form characterization of
the malware app, as described in Section 3, and (d) a flow-based
signature of the app, as described in Section 4.

3 MALWARE CHARACTERIZATION

We augment and refine malware categorization schemas used in
previous work [97, 108], proposing the categorization in Figure 2.
In what follows, we first describe our schema using the example in
Figure 3 for illustration purposes. We then use the categorization
to discuss the malware in our dataset.

3.1 Malware Characterization Schema

Figure 3 shows a simplified version of a malware app from the
SpyBankerHU family [41]. In a nutshell, this malware intercepts
SMS messages and steals the user’s banking credentials. It is acti-
vated when the user unlocks the phone or receives an SMS message.
Both events are handled by the onReceive(...) method of the Un-
lockSMSRecver component (lines 3-32 in Figure 3). Using the Intent
parameter, the method checks whether an SMS was received (lines
4-22). If so, the method checks if the field stealSMS (the name that
we gave to this variable for illustration purposes) is set to true, to
determine whether the SMS stealing functionality is activated (line

1 class UnlockSMSRecver extends BroadcastReceiver {
2 static boolean stealSms = false;
3 void onReceive(Context ctx, Intent in) {
4 if (in.getAction().contains("SMS_RECEIVED")){
5 if (stealSms){
6 ContentResolver cr = ctx.getContentResolver();
7 SmsMessage sms = SmsMessage.createFromPdu(
8 in.getExtra().get("pdus")[0]);
9 Cursor c = cr.query(Uri.parse("content://sms"),
10 new String[]{"_id", "body"});
11 while (c.moveToNext()) {
12 int id = c.getInt(0);
13 String body = c.getString(1);
14 if (body.equals(sms.getMessageBody())) {
15 cr.delete(Uri.parse("content://sms/"+id));
16 }
17 }
18 String device = context.getDeviceId();
19 Connection con = new URL("leaksms.com/?u="+

device).open();
20 con.write(sms);
21 }
22 }
23 String device = context.getDeviceId();
24 Connection con = new URL("commands.com/?u="+

device).open();
25 String commands = con.read();
26 if (commands.contains("steal_sms")){
27 stealSms = true;
28 }
29 String running = getRunningProcesses();
30 if (running.contains("com.garanti.cepbank")) {
31 WebView.loadUrl("fakebank.com");
32 }
33 }}

Figure 3: SpyBankerHUmalware

5). The method then retrieves all SMS messages on the device (lines
6-10) and iterates over them to identify and delete the received SMS
(lines 11-17). It further leaks the SMS content to the developer’s
server, together with the device id (lines 18-20). This is most likely
done to steal the one-time access passcode the bank might send to
the user and to hide from the user messages which could indicate
that someone else (i.e., the malicious party) is manipulating their
bank account.

In any event – whether an SMS is received or the user unlocks
their phone, the app also attempts to communicate with the com-
mand and control server and to steal banking credentials (lines
23-33). Specifically, the app retrieves the device id (line 23) and
contacts its server to retrieve a set of commands (lines 24-25). If it
receives the “steal_sms” command, the app sets the field stealSMS
to true (lines 26-28), indicating that the user is going to be attacked
and enabling the SMS leaking behavior described above. The app
further checks if a process associated with the cepbank banking
application is running (lines 29-30) and, if so, loads an HTML page
that impersonates the login screen of the banking app (line 31). An
unsuspecting user will enter their banking login credentials on the
fake overlay, which sends the credentials to the malicious server.

In summary, the app contains three different payloads: it leaks
the device id when an SMS is received or the phone is unlocked
(lines 18-20 and 23-24); it leaks the content and deletes SMS mes-
sages when instructed by the server (lines 14-20); and it steals
banking credential when the cepbank application is running (lines
29-32). Each of the payloads is triggered under different conditions

Rotten Apples Spoil the Bunch: An Anatomy of Google Play Malware ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA

and activation events, part of which we omitted for the simplicity
of the presentation. We also omitted yet another payload: ad abuse,
as well as additional events that the app intercepts to trigger the
malicious behaviors, e.g., power change.

To accurately describe the behavior of such malware, we use five
categories specified in Figure 2:
1.EventConditions (EC) are events that an app intercepts and that
trigger the activation of a malicious path. We further divide them
into System events, which are triggered by theAndroid systemwhen
the device is booted, an SMS is received, etc.; User events, which are
triggered by the app user, when logging in into the app, pressing a
particular button, copying text, etc.; and Scheduling events, which
are triggered at specific time intervals. Our SpyBankerHU sample
in Figure 3 intercepts SMS- and phone unlocking system events.
2. Check Conditions (CC) are conditions that need to be satisfied
for the malicious behavior to fire. These conditions can depend on
an External server, e.g., when the malicious payload is executed only
when a particular command is received from the app backend, like
in the SpyBankerHU sample in Figure 3. Further, check conditions
can beDevice-dependent, i.e., rely on a certain hardware or software
specification; Environment-dependent, e.g., be executed at a certain
time or location; and Application-dependent, e.g., rely on a certain
permission granted to the application or on a certain data format.
3.Hiding Techniques (H) are used by the app to hide its malicious
actions from the user. These include removing the app icon, so the
user cannot identify and uninstall the app, and blocking information,
such as deleting SMS messages in the SpyBankerHU sample.
4. Payloads (P) describe the mainmalicious functionality of the app
itself. We identified a variety of payloads, including stealing of per-
sonal, device, and banking information, like in the SpyBankerHU
sample in Figure 3.
5. Code Properties (CP) are the code-level details describing how
these behaviors are implemented. We consider the Location of the
code, e.g., being in the application directly, hidden in resources, or
downloaded from a remote server and the Language in which the
malicious code is implemented, e.g., bytecode, native code, or a web-
based language (HTML/JavaScript). For the SpyBankerHU app in
Figure 3, the UnlockSMSRecver class is implemented directly in
bytecode, while the fake login overlay is implemented in JavaScript
and is loaded from a remote server.

Next, we outline, for each of the categories, the implementation
strategies that malware in our dataset employs. Section 4 further de-
scribes our malware signature, which accurately relates the events,
conditions, hiding techniques, and payloads to each other, in a form
of a control- and data-flow graph.

3.2 Malware Characteristics

Figure 4 shows the specific behaviors we observed for each of the
categories in our schema. We mark with an arrow () categories
that were introduced based on information observed in our dataset,
compared with prior work [97, 108]. We also provide the number of
analyzed sample apps exhibiting each of the behaviors. As one app
can contain multiple (or no) event and check conditions, payloads,
etc., it can be counted in multiple categories; thus, the number of
apps in a category does not sum up to 105. A detailed description of
each analyzed sample app is available in our online appendix [35].

Event conditions # % Hiding techniques # %

System 80 76.2 Rich functionality 65 61.9
Boot status 44 41.9 Icon manipulation 34 32.4
Device status 30 28.6 Device admin 15 14.3
Network status 26 24.8 Information blocking 12 11.4

 Developer-defined 26 24.8 Self-uninstallation 6 5.7
Package changes 22 21.0 Automated gesture input 5 4.8

 Service bind 11 10.5 Screen locking 3 2.9
SMS delivery 11 10.5 (c)
Battery status 9 8.6
Call status 8 7.6 Payloads # %

USB status 1 1.0 Information stealing 69 65.7
User 95 90.5 Ad abuse 54 51.4

Application launch 92 87.6 Premium charges 10 9.5
 Button click 46 43.8 Cryptomining 5 4.8
 Sensitive input 28 26.7 Root exploit 4 3.8
 Permissions 25 23.8 Clipboard hijacking 3 2.9
 App install 15 14.3 Port forwarding 3 2.9
 Clipboard text 1 1.0 Ransom 1 1.0

Scheduling 58 55.2 Unknown 16 15.2
Scheduling 58 55.2 (d)

(a)
Check conditions # % Code properties # %

External server 79 75.2 Location
Internet 78 74.3 Direct 97 92.4
SMS 2 1.9 Downloaded (Remote) 60 57.1

Device 82 78.1 Hidden (Resources) 25 23.8
Software specs 62 59.0 Language
Network 43 41.0 Bytecode 102 97.1

 Hardware specs 28 26.7 Web 29 27.6
 Sensors 4 3.8 Native 11 10.5

Environment 41 39.0 (e)
Time 38 36.2
Location 6 5.7

Application 42 40.0
Permissions 31 29.5
Data format 10 9.5

 Probability 8 7.6 indicates categories identified in our work
Version 1 1.0 compared with prior studies [97, 108]

(b)

Figure 4: Characteristics of Google Play malware

1. Event Conditions (Figure 4a) have three sub-categories:
System Events. The majority of the analyzed samples are triggered
by at least one System event, most commonly when the phone
is booted or when the device status changes, e.g., from locked
to unlocked. Similar system events include network, battery, call
status, and SMS delivery events. We believe malware uses system
events to avoid executing the malicious payload on the (easier to
trigger) main application launch while still ensuring the malicious
functionality is eventually triggered. Interestingly, most system
events we observed are less likely to happen on the emulator, e.g.,
lock status change, which further complicates the detection of these
apps at testing time.

We observed two new types of system events not discussed in
earlier reports: Developer-defined are custom events not defined by
the Android platform. For example, Solid (ID: 94) is activated by
the reception of a Firebase message [50]. Considering such custom
event types could challenge dynamic-analysis-based tools. Service
bind events, which allow the app to communicate with bound
services (e.g., accessibility), were described in the literature [47],
but we believe we are the first to observe them in practice. For
example, SpyBankerAJZ (ID: 98) abuses the accessibility service,
which has access to user interactions with other apps, to activate
itself when the user interacts with a banking app and overlays a
phishing browser to steal banking credentials.
User Events. While almost 90% of the samples activate a payload
once the user launches the app, we identified additional user events

ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA Michael Cao, Khaled Ahmed, and Julia Rubin

triggering malicious behavior, such as inputting specific data or
copying text (see Figure 4a for details). For example, ClipperC (ID:
28) triggers when the user copies text and checks if the text is
formatted as a wallet address. If so, the app executes its payload.
Scheduling Events. Around half of the samples periodically repeat
the malicious behavior. For example, HidenAd (ID: 67) schedules
an alarm that displays full-screen ads every 15 minutes, even while
the user is interacting with other apps.
Comparison with earlier reports. Our analysis identified two types
of system events, developer-defined and service bind, not discussed
in earlier reports [97, 108]. We also provided a more detailed char-
acterization of user events according to their types.
2. Check Conditions (Figure 4b) have four sub-categories:
External Server. Three quarters of the analyzed sample apps exe-
cute malicious payloads on receiving particular data from an ex-
ternal server – either through the Internet or by an SMS (a.k.a.
command and control or C&C malware). Most frequently, the com-
mands are retrieved over the Internet. In two cases, the apps receive
an SMS command to enable intercepting and leaking SMS messages
and calling premium numbers, e.g., AceCard (ID: 1).
Device. Three quarters of the samples also condition payloads on
software specs of the underlying Android system, such as system
version and which apps are installed. We identified several checks
not described in earlier reports: hardware specifications, i.e., CPU
and network operator, and sensor data, i.e., battery, temperature,
and motion. For example, Aladdin (ID: 8) checks that the device
contains more than 3 CPU cores before generating ad traffic to an
invisible web page; Vilny (ID: 108) checks the phone temperature
and battery level before mining cryptocurrency, presumably to not
alarm the user by a sharp change of these parameters.
Environment. These checks, commonly known as time and logic
bombs, activate malicious payloads only at a certain time and/or
location. For example, PletorD (ID: 80) checks the user’s location to
ensure that the user is not from Russia or Ukraine, before locking
the phone in silent mode and asking for a ransom.
Application. Application-specific checks include permissions, data
format, and app version. For example, SMSAndroidOSWesp (ID: 91)
uses regular expressions to check that the received SMS contains
a PIN, before leaking it to the malware developer’s server. More-
over, we identified a number of samples that decide whether to
activate the malicious payload probabilistically. For example, Hid-
denAdHRXH (ID: 64) uses the java.util.Random library to roll a
number between one and 100 and automatically click on ads only
if the obtained value is less than 25.
Comparison with earlier reports. Previous work reported condi-
tions based on commands retrieved from an external server, in-
stalled apps, time, and location. Our detailed categorization reveals
new checks: hardware specifications, sensors, and random numbers.
3. Hiding Techniques (Figure 4c). The most prominent technique
in our dataset is the inclusion of rich benign functionality, which is
employed bymore than half of our samples. This is done to convince
the user that the app is legitimate, e.g., by presenting a weather
forecast (ID: 99) or providing a YouTube-like video interface (ID: 2).
Unlike repackaging, these are unique apps and we are not aware of
other reports that explicitly identified such behavior.

Another frequent hiding technique is icon manipulation. In addi-
tion to the previously observed case of hiding the app icon, samples
in our dataset also change the icon, pretending to be another app.
For example, Reputation1 (ID: 86) changes the icon and name to
resemble Google Maps. Moreover, when the user clicks on the icon,
the application redirects to Google Maps. Meanwhile, it periodically
pushes full-screen ads to the user without the user being aware of
the origin of these ads.

Obtaining device admin privileges can make the malware harder
to install. It can also allow the malware to perform privileged op-
erations, such as changing the lock-screen password or locking
the screen, to further increase the difficulty of uninstallation. For
example, SpyBankerHU (ID: 99) locks the screen when the user
attempts to disable its admin privileges. Samples also employ infor-
mation blocking, i.e., hiding information produced by the payload
from the user, and screen locking, to prevent the user from noticing
suspicious behaviors on the device.

We also observed a new hiding approach via self-uninstallation.
For example, BanBraA (ID: 19) can receive commands from the mal-
ware developer’s server to uninstall itself. This confuses the user
about which app performed the malicious behavior and reduces the
chances of the app receiving a bad review. Yet another new tech-
nique is abusing accessibility services to perform automated gesture
input to prevent the user from performing certain actions. For ex-
ample, SpyBankerAJZ (ID: 98) presses the back button whenever
the user opens an antivirus.
Comparison with earlier reports. Similar to Malware Genome and
AMD, we observed icon hiding, information blocking, device admin
privileges, and device screen locking hiding techniques. We also
observed new trends: implementing legitimate benign functionality,
changing the app icon, self-uninstalling, and automated gesturing.
In addition, the AMD report described techniques which did not
occur in our dataset: cleaning system logs, killing antiviruses, re-
moving the app from the device administrator list, and preventing
uninstallation of the app.
4. Payloads (Figure 4d) are divided into nine sub-categories:
Information Stealing. The most frequent payload in our dataset
is information stealing, e.g., of SMS, accounts, phone numbers,
contacts, and stored files. Some malware also explicitly tricks the
user into entering sensitive information. For example, Reputation1
(ID: 86) presents a web page claiming that the user won a prize.
To “redeem” the prize, the web page provides a survey that steals
sensitive information from the user.
Ad Abuse. Samples with ad abuse are also frequent in our dataset.
We identified three ad abuse patterns: (a) Aggressive advertisement
forces advertisements when the user performs a certain action or
periodically. For example, FraudApp (ID: 51) acts as a fake cryptocur-
rency miner while pushing full-screen ads. (b) Hidden ads loads
web pages that contain ads to gain additional revenue. For example,
Aladdin (ID: 8) opens an invisible WebView to increase the number
of visits to the malicious developer’s website that contains ads. (c)
Ad-click fraud automate clicks on ads. For example, AdClickerBN
(ID: 2) retrieves a list of targeted websites and a JavaScript payload
from a C&C server and performs ad clicks.
Premium Charge. Apps also impose premium charges on the user
by subscribing them to premium services without user consent, e.g.,

Rotten Apples Spoil the Bunch: An Anatomy of Google Play Malware ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA

SMSAndroidOSWesp (ID: 90) and Sonyvpay (ID: 94). To perform
the subscription, the malicious app obtains up-to-date information
about the service, such as its subscription number, subscription
message, and subscription account. It then sends a request to the
service over SMS, call, or internet. A confirmation message is sent
back to the device over SMS and is intercepted and confirmed by
the malware.
Cryptomining. Several samples commence cryptocurrency mining
without the user’s consent, e.g., CoinMinerQ (ID: 30) and CPUMiner
(ID: 31). To perform cryptomining, a miner receives a hash puzzle
and its result; they need to find the puzzle input value that leads
to the given result. The first miner to do so is rewarded with cryp-
tocurrency. To increase the chances of getting the monetary reward,
malicious developers leverage mobile devices of many unsuspecting
users, synchronizing between the users via a configuration obtained
from a remote server. Interestingly, while mining cryptocurrency is
a popular monetization tactic, earlier studies did not identify such
apps. This could be because of the sharp rise in bitcoin prices in
2017 [9], which falls outside of the date range of earlier reports.
Root Exploit. Malware exploits vulnerabilities in the Android op-
erating system to grant the app unrestricted access to the device’s
memory space. Root exploits are typically performed in native code,
as bytecode runs in a virtual machine that is isolated from the op-
erating system. To perform root exploits, the malware retrieves
native binaries stored locally or over the internet. It then executes
the binaries and performs unauthorized actions, such as silently
installing other malicious apps. For example, Godless (ID: 53) exe-
cutes root exploits then downloads and installs an app with system
privileges to perform additional payloads.
Clipboard Hijacking. Yet another technique not reported in pre-
vious studies is a clipboard hijacking attack, when the malware
changes the text clipboard so that the user pastes unintended text.
For example, the ClipperC malware described earlier (ID: 28) uses
this mechanism to replace a wallet address copied by the user with
the malware developer’s wallet address.
Port Forwarding. Our samples also perform port forwarding, a spe-
cial form of information stealing where malware attempts to steal
data from the user’s internal network. To this end, malware cre-
ates an outbound connection to the malicious developer’s server,
retrieves a target address and network command, forwards the net-
work command to the internal network to collect data, and relays
the response back to the developer’s server. For example, Milky-
Door (ID: 77) tunnels using SSH into the user’s internal network to
steal enterprise data.
Ransom. For monetization, some apps ask for a ransom, where
the malware encrypts data or disables device functionalities to
coerce the victim into paying a fee, e.g., using a bitcoin transaction,
to release device functionalities that are being held captive. For
example, PletorD (ID: 80) locks the device into silent mode and
opens a WebView to ask for a ransom to unlock it.
Unknown Payload. There are 16 samples in our dataset that down-
load code dynamically from a remote server. Such code might con-
tain malicious behavior, adding to other payloads we observed in
these apps. As we could not confirm the malicious behavior of the
downloaded code, we mark these payloads with unknown.

Comparison with earlier reports. Prior work did not report on the
cryptocurrency mining, clipboard hijacking, and port forwarding
payloads, which were observed in our datasets. The AMD study
reported the ad abuse payload, but did not elaborate on the dif-
ferent types of ad abuse that we found in our study: aggressive
advertisement, hidden ads, and ad-click fraud.
5. Code Properties (Figure 4e) are divided into two sub-categories:
Location. Check conditions, hiding techniques, and payloads can
be implemented directly in the APK .dex file, downloaded (remote)
from a server, or hidden (resource), where the code is packed in the
app’s resources. For example, HiddadBZ (ID: 61) hides its payload in
a text font file, which is converted to APK and executed at runtime.

Interestingly, around half of the analyzed samples download code
from a third-party server. The samples typically use DexClassLoader
to load the downloaded bytecode and invoke it via reflection. Two
samples, DroidPlugin (ID: 34) and AsiaHitGroup (ID: 15), abuse the
virtual installation technology [67], originally designed to install
multiple copies of the same app, to silently install malicious apps.
Other samples attempt to install the downloaded APKs directly,
using social engineering to convince the user to allow installation.
For example, AnubisDropper (ID: 12) claims that the system is out
of date and the user should install a secondary app to “update” it.
Language. Check conditions, hiding techniques, and payload can
also be implemented in different languages: Java bytecode, Web
(JavaScript), or in native code (C/C++). We found that while most of
the analyzed samples implement the malicious functionality in Java
bytecode, some malicious behaviors, mostly related to ad abuse, are
implemented in JavaScript code loaded into WebViews. Finally, a
few samples also employ native code.
Comparison with earlier reports. The analysis performed in earlier
work was more coarse-grained and only considered the location of
the payload. Instead, our work maps each of the malicious activi-
ties – check conditions, hiding techniques, and payloads – based on
their code/location. The detailed map is in our online appendix [35].
To answer RQ1, we observed that a high fraction of the analyzed
samples implement information stealing and ad abuse. We also
identified new payloads: cryptomining, clipboard hijacking, and
port forwarding. Malware shifts its payloads off the main execution
path and hides them under a number of difficult-to-trigger checks,
complicating the detection of these samples. Furthermore, samples
also split their malicious paths across multiple languages. Finally,
we observed that malware employs new hiding techniques, such as
self-uninstallation and automated gesturing.

4 FLOW-BASED MALWARE SIGNATURE

Themalware categorization in Section 3 provides information about
event and check conditions, hiding mechanisms, and payloads em-
ployed by current malware; understanding how these actions are
combined together is an essential step towards building efficient
tools for detecting such malware. For the SpyBankerHU sample in
Figure 3, presenting web-based content in aWebView is, by itself,
a legitimate application behavior, common to many benign apps.
However, this behavior is executed only when a certain app, i.e.,
cepbank, is installed on the device (lines 29-32). Discovering such
contextual information can help a technique deem this sample mali-
cious. Likewise, understanding the interplay between deleting SMS

ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA Michael Cao, Khaled Ahmed, and Julia Rubin

EC:System:SMS delivery

CC:External server:Internet

H:Information blocking

DR:SMS

P:Information stealing

DR:Device

EC:System:Device status

DR:Device

P:Information stealing

DR:Internet

DR:Software specs

CC:Software specs

EC:User:Sensitive input

DR:Sensitive Input

P:Information stealing

Bytecode, Direct

Web, Downloaded

Code property region

Action
Data retrieval

Control flow
Data flow

True

False

True

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15
Blog-described

Figure 5: Flow-based malware signature of SpyBankerHU

messages and the condition received from the server which enables
this behavior (lines 25-28 and 5-17) can help distinguish between
benign apps that manage users’ SMS messages and apps that have
a malicious intent. Understanding the precise order of events and
conditions that activate a malicious payload, as well as implemen-
tation mechanisms, such as information flows between bytecode
and JavaScript code in WebViews, and code-level obfuscation tech-
niques, such as String manipulations and app- and phone-specific
content management code (lines 5-17 in Figure 3) is also essential
to build efficient techniques that can detect realistic malware.

To capture such contextual and path-level information, we man-
ually created a flow-based malware signature graph for each of the
analyzed samples. These signatures go beyond the categorization in
Section 3; they rather capture control- and data-flow dependencies
for paths related to each malicious behavior. They also capture
information about how each malicious component is implemented,
including implementation location and code language.

Figure 5 shows an example of such a graph for SpyBankerHU.
The nodes of the graph are the four actions from the malware
categorization schema in Figure 2: Event Conditions (EC), Check
Conditions (CC),Hiding Techniques (H), and Payload (P). These nodes
are shown as rectangles with the corresponding event type in their
names. We add one additional type of node, which we call data
retrieval (DR); it is shown as an ellipse in Figure 5. Each such node
corresponds to the action of retrieving data, e.g., from an SMS
message, the Internet, or user-sensitive input. The retrieved data is
used either in evaluating the check condition or in a payload.

The graph contains two types of edges: control-flow (dotted lines)
and data-flow (solid lines). Similar to the control- and data-flow con-
cepts from the program analysis domain [45], control-flow edges in
our graph describe the order in which events are executed; data-flow
edges describe the flow of information from data retrieval to either
check condition or payload nodes. For the example in Figure 5, the
P:Information stealing node (node #6 in the figure) is executed after
DR:SMS (node #3), H:Information blocking (node #4), and DR:Device
(node #5); the data-flow edges show that the P:Information stealing
node leaks SMS and device-related information.

Another important detail captured by the graph is that the info
stealing payload is triggered only after an SMS is received (node
#1) and only if the condition CC:External server:Internet (node #2)
evaluates to True. The condition itself is dependent on the informa-
tion obtained from the Internet (node #10), which is retrieved when
the user unlocks the phone: EC:System:Device status (node #7).

Finally, we group nodes into regions capturing the code proper-
ties of the nodes – location and language. The regions are indicated
by dashed lines in Figure 5. In this example, there are two regions:
the first contains nodes corresponding to the bytecode directly
loaded by the app from the .dex file (nodes #1-#12) and the sec-
ond contains nodes corresponding to Web code (HTML/JavaScript)
downloaded from the remote server (nodes #13-#15).

When we analyzed this app, the remote server was down and,
thus, we have no access to the code downloaded from the server.
We describe the behavior of that code based on the description in
the blog post: upon the user entering their credentials (node #13),
this info gets leaked to the malware developer’s server (nodes #14
and #15). As discussed in Section 2.2, we mark nodes for which we
followed the post description rather than observed the malicious
payload directly with a star (⋆).

A path in our graph is a sequence of nodes connected by control-
flow edges. A path starts from a node with no incoming edge, which
is an Event Condition (e.g., node #1 in Figure 5). A path ends with
a node with no outgoing control-flow edges, which could be a
payload, a data retrieval node, or a hiding technique node (e.g.,
node #15). The example in Figure 5 has three paths: 𝑃1 is the path
from node #1 to #15, where the condition in node #2 evaluates to
True. 𝑃2 is a (shorter) path from node #1 to #15 where the condition
evaluates to False. Finally, 𝑃3 is the path from node #7 to #15.

A path can include multiple event conditions. For example, 𝑃3
requires the user to unlock the device (node #7) and provide sensi-
tive input (node #13). Likewise, a path can include multiple check
conditions, e.g., 𝑃1 checks a server command (node #2) and installed
apps (node #12). Finally, a path can have multiple hiding techniques
and payloads, e.g., 𝑃2 contains two information stealing payloads
(nodes #9 and #15).
Signatures of GP malware. By analyzing the malware signatures
of our samples, we make three main observations:

1) Overall, the samples have 14.9 paths on average (for this cal-
culation, we excluded 5 outlier samples with more than 100 paths
as the median number of paths is 9). Each path has multiple event
and check conditions, hiding techniques, data retrieval nodes, and
payloads. There are 2.8 event conditions and 4.8 check conditions
per path, on average. The relatively high number of conditions
per path shows that malware conditions the execution on specific
external and internal settings (see Figure 4 for the list of conditions).
For example, Vilny (ID: 108), which mines cryptocurrency on the
device, checks a command from the server, phone temperature, bat-
tery level, and that the screen is off, all before starting the payload.
Malware analysis tools that are based on dynamic and symbolic
execution should account for all these conditions of different types
to fully analyze / trigger the malware.

2) There are 5.3 data retrieval nodes per path, on average. Thema-
jority of these data retrievals are for validating the check conditions

Rotten Apples Spoil the Bunch: An Anatomy of Google Play Malware ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA

and the rest are for retrieving sensitive data for the information leak-
age payloads. Interestingly, around 40% of data retrievals happen
on a path different from the target check condition or payload. That
is, the applications retrieve and store data in, say, a file, and then
uses it on another path, triggered by a different event. We identified
several cross-path data storage locations: global variables, files, and
shared preferences. For example, Bahamut (ID: 18) records the call
audio into a file when the call is started. Later, in a different event –
on network change – it sends the stored file to a third-party server.
This implies that malware analysis tools should be able to consider
more than one path simultaneously, e.g., to trigger multiple paths
during dynamic analysis and to analyze data flows across multiple
paths during information flow analysis. Unfortunately, some of
the existing tools, especially those based on formal methods and
complex program analysis, currently only consider one callback at
a time, e.g., [75, 90, 98]. Furthermore, tools should consider infor-
mation flows through multiple data types given above, in addition
to fields and local variables.

3) Samples have 3 payloads on average, each of which is reach-
able via 12.4 paths on average. Multiple paths lead to the same
payload as malware typically triggers the payload from multiple
events, to maximize the likelihood and frequency of the payload
activation. For example, a MilkyDoor (ID: 77) payload which is
not reachable by simply opening the app can instead be reached
from 60 different paths originating from phone boot, restart, unlock,
Wi-Fi connectivity change, and cellular connectivity change events.
These events are more likely to occur on a user device rather than
on an emulator, as an emulator is typically on, unlocked, and has
a stable connection. We believe malware uses this mechanism to
avoid detection while maximizing the likelihood to execute the
payload. In fact, more than 70% of the paths in our samples do not
start on app opening.
To answer RQ2, our samples have more than 14 paths on average,
many of which originate from different events. Each path contains
numerous conditions, which need to be satisfied for the payload to
execute. Paths also contain numerous data retrieval nodes to access
data that is validated in the conditions and that flows to payloads.
Some data retrieval operations cross multiple paths by “temporar-
ily” storing data in global variables, files, and shared preferences.
Understanding the set and order of these behaviors is needed to
build accurate malware detection approaches.

5 DISCUSSION AND IMPLICATIONS

In an attempt to understand why such malware still makes its way
to the Google Play store, we analyze how existing tools deal with
the different characteristics of malware in our dataset. We focus
on academic tools only because intellectual property (IP) rights,
“security by obscurity” (to prevent malware authors from attack-
ing the tools), and other restrictions prevent us from analyzing
commercial offerings. Yet, as all malware collected in our dataset
bypassed Google Play defenses, we observe that commercial tools
are also limited in detecting such malware.

To identify relevant academic tools, we systematically analyzed
proceedings of 20 top conferences and journals in software engi-
neering and security, focusing on publications between January
2010 and July 2021: ICSE [6], FSE [10], ASE [5], ISSTA [8], TSE [91],

Forced Execution (7)

Condition Detection (3)

Hiding Detection (4)

Payload-specific (51)

Repackaged Malware (9)

M
al

w
ar

e
D

et
ec

ti
o

n
 T

o
o

ls

Info Leakage (37)

Phishing (3)

Privilege Abuse (5)

Inter-app Attack (26)

Generic Malware (121)

Dynamic Code Loading (2) Sandboxing (14)

Ad Abuse (5)

Ransom (1)

Figure 6: The space of malware detection tools

Empirical SE Journal [39], IEEE Software [3], JSS [12], Informa-
tion and Software Technology [4], TOSEM [18], CCS [2], S&P [15],
USENIX Security [19], ACSAC [1], NDSS [13], TIFS [17], Comput-
ers & Security [11], Information Security [7], Security and Privacy
Journal [14], and Trans. on Dependable and Secure Computing [16].
This search resulted in 414 papers. We further augmented our list of
papers with techniques from seven recent surveys on Android secu-
rity [26, 31, 43, 73, 74, 84, 88], to cover papers that were published
in other venues, identifying additional 106 papers.

Two authors of this paper read the abstract/introduction of the
identified papers, selecting those that propose approaches for flag-
ging apps as malicious vs. benign. The disagreements (7%) were
discussed and resolved either in a mutual discussion or with the
help of a third arbitrator. At the end of this process, we identified
237 relevant reports which we further categorized by the type of
malware analysis they perform. The resulting categorization is
shown in Figure 6 and discussed below; the full list of papers and
their categories is available online [35].
Generic Malware. The majority of papers in our list (121) are in
this category. They introduce techniques that aim to detect mal-
ware by learning from a large set of malicious and benign apps. The
techniques vary by the type of features they extract, the way of
extracting these features (statically, dynamically, or using a hybrid
approach), and the type of machine learning technique used for cre-
ating the resulting malware classification model. Features extracted
from the apps include permissions, e.g., [40, 77], Java/Android API
calls, e.g., [33, 66, 105], system calls, e.g., [78, 87, 109], properties
extracted from control- and data-flow graphs of the application,
e.g., [66] or combinations of the above, e.g., [30, 49, 57].

These techniques rely on the assumption that malware apps
have similar features, which are different from the features of be-
nign applications. Our analysis shows that 65% of the analyzed
malware implement rich benign functionality to penetrate into the
store and further avoid detection by the user. In such situations,
features extracted from the benign portion of the apps may out-
weigh features from the malicious portion, tipping the classification
outcome towards the benign class. Future research could benefit
from identifying more targeted features that highlight specific ma-
licious behaviors. Approaches for pre-processing apps, to remove
known benign code, e.g., using library or repackaged code detec-
tion [37, 62, 86, 104] could also be used in tandem with generic
malware detection techniques.

ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA Michael Cao, Khaled Ahmed, and Julia Rubin

Payload-specific. Another major line of work (51 papers) focuses
on looking for a specific payload in an app. Out of those, most
approaches (37 papers) identify information leakages. While infor-
mation leakage is indeed the most prevalent payload in our analysis,
other payloads do not seem to receive similar attention. In particu-
lar, only a few techniques, e.g., [56], focus on ad abuse detection –
the second most common payload in our analysis (69 samples).
Moreover, while these techniques work on the Java bytecode level,
29 samples in our analysis implement the payload in JavaScript and
11 – in native code.

A handful of approaches have also been proposed to detect priv-
ilege abuse, overlay phishing, and ransom. Yet, these approaches
cannot detect the full range of related malicious behaviors identi-
fied in our dataset. For example, ransomware detection [36] focuses
on identifying apps that perform encryption, while samples in our
dataset rather force the device into silent mode before requesting
ransom. Finally, no payload-specific techniques exist for other pay-
loads in our dataset, such as cryptomining, clipboard hijacking,
account stealing via accessibility services, and more.
Condition Detection. A few papers focus on detecting the check
conditions that lead to activating malicious payloads. This line of
work assumes that code that is executed under narrow conditions
is indicative for malicious behavior. For example, TriggerScope [46]
identifies sensitive APIs conditioned by checks constrained by a con-
stant value, mostly targeting logic and time bombs. HsoMiner [69]
observes that malicious and benign branches under a narrow con-
dition usually exhibit different characteristics and thus trains a
classifier to learn the difference between malicious and benign
branches. EnMobile [101] detects data- and control-flows between
commands received from the Internet and sensitive APIs used by
the app, targeting command-and-control malware.

We believe these are promising directions. Yet, our analysis
shows that these techniques might miss existing samples, e.g.,
because both conditioned branches can be malicious, as in our
SpyBankerHU example in Figure 5. Moreover, around 30% of the
samples we analyzed employ new check conditions that were not
considered before; such conditions would be difficult to integrate
into existing approaches, e.g., checking for the Internet or screen
status is a common behavior of benign apps as well. Finally, to
avoid false positives, techniques in this category often approximate
malicious behaviors by the usage of sensitive APIs executed under
conditioned checks. Yet, the precise list of sensitive APIs is hard
to define; we found samples that use even the most “naïve” APIs
for malicious purposes, e.g., an API to set clipboard data. At the
same time, apps can deliver payloads without relying on any API
at all, e.g., they can use mathematical operations only to mine cryp-
tocurrency on the device. We thus believe it would be beneficial
to combine this line of work with techniques that look at specific
payloads and also identify strategies for incorporating additional
condition checks that are common in benign apps as well.
Forced Execution.Another interesting line of work aims at dynam-
ically forcing the app execution into a malicious path. For example,
IntelliDroid [98] and AppIntent [102] use symbolic execution to
find the path constraints that lead to executing sensitive APIs, then
solve the constraints and provide the appropriate input that triggers

the path. FuzzDroid [75] and DualForce [90] use concolic execu-
tion to simplify unsolvable constraints. In addition to the problem
of triggering the right conditions in the right order discussed in
Section 4, the main limitation of these techniques is that, to scale
condition resolution via symbolic or concolic execution, they limit
the scope of the analysis, e.g., to analyze each application event
(entry point) separately. Our analysis shows that malicious behav-
iors cross entry points in 40% of the analyzed samples; to detect
such behaviors, it is essential to analyze paths that cross multiple
entry points, including cases where data is transferred from one
path to another. Moreover, constraints for some conditions are hard
to infer statically. For example, in the Bahamut sample (ID: 18),
the response from the server is processed in a loop, which extracts
and parses each response line separately, towards retrieving a com-
mand. Analyzing such code requires “guessing” the right structure
of the response and the desired number of loop iterations, which is
a nontrivial task.
Hiding Detection. Several papers in this category mostly focus
on flagging the difference between the behavior of the app and its
presented user interface [52, 68]. Shan et al. [80] propose scanning
the apps for identifying, “self-hiding behavior”: blocking phone
calls/text messages or removing calls and messages from logs. Yet,
the authors notice that benign apps also sometimes employ these
behaviors. Thus, hiding techniques on their own do not provide
sufficient evidence of maliciousness and can be combined with
other techniques, e.g., for trigger and payload detection.
Dynamic Code Loading. A few papers focus on detecting dy-
namic code loading [72, 82], where code that is not in the APK’s
bytecode is fetched, either from local storage or from the internet,
and loaded at runtime. While dynamic code loading can indeed be
used maliciously, it can still be used by benign apps for legitimate
reasons, such as patching or loading add-ons. Analyzing the dy-
namically downloaded code on-demand, as it is being loaded and
executed, could be a productive direction for possible future work.
Sandboxing. Tools in this category aim to create analysis platforms
to aid researchers in analyzing malware apps, e.g., [27, 63, 89]. Our
analysis shows that in almost 80% of our samples, a payload is
activated on receipt of a command from the application server. As
the malicious developer may turn their servers off or simply not
send the right command until the app passes the vetting stage,
sandboxing will have limited abilities to detect such apps.
Repackaged Malware and Inter-app Attacks. Tools in these cat-
egories focus on detecting repackaged apps, i.e., apps that resemble
benign apps available in the store, and apps that “collude” with each
other to perform a joint attack. As our dataset does not contain
such apps, we omit a discussion of papers in these categories.
A Note on Programming Languages.Most existing tools focus
on Java bytecode, with a few analyzing native code as well [20, 21,
49]. While more than a quarter of our samples split the malicious
execution between Java bytecode and Web/native code, none of the
tools perform an end-to-end analysis of such executions, e.g., to
identify conditions in bytecode that constrain Web/native payloads.
As malware becomes increasingly more sophisticated, developing
such tools could be a direction of possible future work.

Rotten Apples Spoil the Bunch: An Anatomy of Google Play Malware ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA

Summary. The majority of existing tools focuses on identifying
features and training machine learning classifiers to tell malicious
and benign apps apart. Payload-specific tools focus mostly on infor-
mation leakages, leaving a gap in identifying additional payloads.
A number of approaches also look at analyzing and triggering
conditions that lead to payloads, as well as at hiding techniques.
A productive research direction could be to combine condition-,
payload-, and hiding-specific techniques, providing a holistic de-
tection approach that can analyze the full behavior of apps. Tools
looking at cross-platform malware behaviors, as well as dynami-
cally downloaded code, are also needed.

6 LIMITATIONS AND THREATS TO VALIDITY

The main threat to the validity of our results stems from the manual
analysis we performed: when identifying blog posts describing the
malware, we could have misinterpreted the findings in a post or
missed some relevant blog posts. We could also have missed or mis-
classified some of the analyzed tools. To mitigate these threats, two
authors of this paper performed the blogs and tools classification
independently and then cross-validated each other’s results.

When performingmanual analysis of apps, we could have missed
some payloads or incorrectly interpreted the findings. To mitigate
this threat, two authors of this paper worked collaboratively on
analyzing a number of apps, to establish a common process and
methodology. The findings from all analysis steps were discussed
with all authors of the paper in periodic meetings, to identify and fix
misinterpretations and omissions. We make all our results publicly
available to facilitate reproducibility.

We could not perform a detailed manual analysis for some of the
apps due to heavy obfuscation, the use of commercial packers, miss-
ing encryption keys, and more (see Section 2.2). We excluded these
apps from our analysis, to ensure the validity of our results. For apps
that rely on a server that is now down, we used descriptions of ma-
licious behaviors taken from the blog post, when available. As the
posts may not describe all event conditions, check conditions, and
payloads that the downloaded code uses, we could have captured
the paths in these apps only partially. We explicitly mark nodes
(with ⋆) in our flow signatures (5.9 % of all nodes) to distinguish
them from behaviors we observed directly.

Our findings might not generalize beyond the dataset that we
considered. Yet, as we carefully designed the data collection pro-
cess and selected a large number of apps from several top security
company blogs, we believe that our results are reliable.

Finally, our discussion of implications on malware detection
tools is based on paper analysis rather than concrete evaluation.
As we identified 202 relevant tools, with around 50 being open-
sourced, performing proper evaluation requires (1) a good tool
sampling strategy, including a strategy for evaluating tools that
are not open-sourced, and (2) proper training/testing methodology
as the majority of the tools are based on machine learning (see
Section 5). We thus leave such a study for possible future work.

7 RELATEDWORK

Felt et al. [44] were likely the first to manually analyze and report
on the behavior of 18 Android malware apps, as well as 28 iOS and
Symbian apps, collected between 2009 and 2011. Later, Jiang and

Zhou [108] collected and manually analyzed apps from antivirus
company blogs between 2010 and 2012, contributing a comprehen-
sive set of 1,260 labeled Android malware apps from 49 malware
families (the Malware Genome dataset). Wei et al. [97] applied a
similar methodology to collect a large set of 24,650 apps that belong
to 71 malware families (the AMD dataset) and manually analyzed
405 of these apps. The dataset contains malware between 2012 and
2016. While our work is similar, we collected and manually ana-
lyzed a newer set of apps, identifying new payloads and activation
mechanisms, as discussed in Section 3. We also outlined hiding
techniques and code-level app properties, and provided detailed
information on the end-to-end malware activation mechanisms
(Section 4), which was not done before.

Similar to us, Kiss et al. [58] performed a detailedmanual analysis
of samples from seven malware families spanning 2011-2015, de-
scribing events and activation conditions required to trigger the ma-
licious behavior. Yet, our dataset is substantially newer and larger,
allowing us to identify a larger set of malware characteristics. We
also created a schema to capture information about path-sensitive
behaviors.

Recently, Xia et al. [100] and Wang et al. [94] studied payloads
in cryptocurrency- and COVID-related apps from various markets.
Unlike our work, these analyses did not provide activation condi-
tions and the code-level properties of malicious behaviors, focusing
on high-level characteristics of the payload. We also do not limit
our analysis to apps in a particular category.

A number of authors collected large datasets of malware from
various sources, mostly using antivirus scanners to distinguish ma-
licious and benign apps [24, 30, 51, 59, 60, 93, 106]. Others collected
datasets of malware barring particular payloads, e.g., piggyback-
ing [61], adware [48, 65], ransomware [36], or bankingmalware [32].
While these datasets are useful for tool evaluation, the authors do
not perform a detailed manual analysis to extract the exact proper-
ties of the collected apps, as we do in our work.

Several authors focused on studying the space of features used
for malware classification, e.g., [22, 95, 96], as well as biases in
malware classification, e.g., [23, 25, 71, 103]. Others built generic
and dedicated techniques for identifying malicious applications, as
discussed in Section 5. Our work is orthogonal as we do not study
datasets at scale but rather perform a detailed manual analysis of
apps that evaded detection by the Google Play store.

8 CONCLUSION

In this paper, we systematically built a dataset of 1,238 malware
apps that penetrated the official Google Play app store between
January 2016 and July 2021. We manually analyzed samples from
105 distinct families, collecting detailed information about activa-
tion conditions, hiding techniques, payloads, and code properties
(original location and language) that malware employs. We com-
pared our characterization to prior malware analysis reports and
further produced detailed malware signatures that accurately cap-
ture malicious execution paths of each sample app. We discussed
the properties of existing malware detection tools in the context
of our analysis and identified gaps and possible future research
directions. We believe our detailed analysis of malware behaviors
can help develop more efficient malware detection tools.

ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA Michael Cao, Khaled Ahmed, and Julia Rubin

REFERENCES

[1] [n.d.]. Annual Computer Security Applications Conference (ACSAC).
[2] [n.d.]. Conference on Computer and Communications Security (CCS).
[3] [n.d.]. IEEE Software.
[4] [n.d.]. Information and Software Technology (IST).
[5] [n.d.]. International Conference on Automated Software Engineering (ASE).
[6] [n.d.]. International Conference on Software Engineering (ICSE).
[7] [n.d.]. International Journal of Information Security (IJIS).
[8] [n.d.]. International Symposium on Software Testing and Analysis (ISSTA).
[9] [n.d.]. Investopedia. https://www.investopedia.com/articles/forex/121815/bitcoins-

price-history.asp.
[10] [n.d.]. Joint European Software Engineering Conference and Symposium on

the Foundations of Software Engineering (ESEC/FSE).
[11] [n.d.]. Journal of Computers & Security.
[12] [n.d.]. Journal of Systems and Software (JSS).
[13] [n.d.]. Network and Distributed System Security Symposium (NDSS).
[14] [n.d.]. Security & Privacy Journal.
[15] [n.d.]. Symposium on Security and Privacy (S&P).
[16] [n.d.]. Transactions on Dependable and Secure Computing (TDSC).
[17] [n.d.]. Transactions on Information Forensics and Security (TIFS).
[18] [n.d.]. Transactions on Software Engineering and Methodology (TOSEM).
[19] [n.d.]. USENIX Security Symposium.
[20] Vitor Monte Afonso, Matheus Favero de Amorim, André Ricardo Abed Grégio,

Glauco Barroso Junquera, and Paulo Lício de Geus. 2015. Identifying Android
Malware Using Dynamically Obtained Features. Computer Virology and Hacking
Techniques 11, 1 (2015), 9–17.

[21] Shahid Alam, Zhengyang Qu, Ryan Riley, Yan Chen, and Vaibhav Rastogi. 2017.
DroidNative: Automating and Optimizing Detection of Android Native Code
Malware Variants. Computers and Security (CS) 65 (2017), 230–246.

[22] Kevin Allix, Tegawendé F. Bissyandé, Quentin Jérome, Jacques Klein, Radu State,
and Yves Le Traon. 2016. Empirical Assessment of Machine Learning-Based
Malware Detectors for Android. Empirical Software Engineering (EMSE) 21, 1
(2016), 183–211.

[23] Kevin Allix, Tegawendé F Bissyandé, Jacques Klein, and Yves Le Traon. 2015. Are
Your Training Datasets Yet Relevant?. In Proc. of the International Symposium
on Engineering Secure Software and Systems (ISESSS). 51–67.

[24] Kevin Allix, Tegawendé F. Bissyandé, Jacques Klein, and Yves Le Traon. 2016.
AndroZoo: Collecting Millions of Android Apps for the Research Community.
In Proc. of the Working Conference on Mining Software Repositories (MSR). 14–15.

[25] Kevin Allix, Tegawendé François D Assise Bissyande, Jacques Klein, and Yves
Le Traon. 2014. Machine Learning-Based Malware Detection for Android Applica-
tions: History Matters! Technical Report. University of Luxembourg, SnT.

[26] Ebtesam J. Alqahtani, Rachid Zagrouba, and Abdullah Almuhaideb. 2019. A
Survey on Android Malware Detection Techniques Using Machine Learning
Algorithms. In Proc. of the International Conference on Software Defined Systems
(SDS). 110–117.

[27] Cosimo Anglano, Massimo Canonico, and Marco Guazzone. 2020. The Android
Forensics Automator (AnForA): A tool for the Automated Forensic Analysis of
Android Applications. Computers and Security (CS) 88 (2020), 1–15.

[28] APKMonk. [n.d.]. APKMonk. https://www.apkmonk.com.
[29] APKPure. [n.d.]. APKPure. https://apkpure.com.
[30] Daniel Arp, Michael Spreitzenbarth, Malte Hübner, Hugo Gascon, and Konrad

Rieck. 2014. DREBIN: Effective and Explainable Detection of AndroidMalware in
Your Pocket. In Proc. of the Network and Distributed System Security Symposium
(NDSS). 1–15.

[31] Saba Arshad, Munam Ali Shah, Abid Khan, and Mansoor Ahmed. 2016. Android
Malware Detection & Protection: A Survey. International Journal of Advanced
Computer Science and Applications (IJACSA) 7, 2 (2016), 463–475.

[32] Chongyang Bai, Qian Han, Ghita Mezzour, Fabio Pierazzi, and VS Subrahmanian.
2019. Dbank: Predictive behavioral analysis of recent android banking trojans.
Transactions on Dependable and Secure Computing (TDSC) (2019).

[33] Haipeng Cai, Na Meng, Barbara Ryder, and Daphne Yao. 2018. Droidcat: Effec-
tive Android Malware Detection and Categorization Via App-Level Profiling.
Transactions on Information Forensics and Security (TIFS) 14, 6 (2018), 1455–1470.

[34] Michael Cao, Khaled Ahmed, and Julia Rubin. 2022. GooglePlayMalware. https:
//doi.org/10.5281/zenodo.5376011.

[35] Michael Cao, Khaled Ahmed, and Julia Rubin. 2022. Supplementary Materials.
https://resess.github.io/artifacts/GooglePlayMalwareAnalysis.

[36] Jing Chen, Chiheng Wang, Ziming Zhao, Kai Chen, Ruiying Du, and Gail-Joon
Ahn. 2017. Uncovering the face of android ransomware: Characterization and
real-time detection. Transactions on Information Forensics and Security (TIFS) 13,
5 (2017), 1286–1300.

[37] Kai Chen, Peng Wang, Yeonjoon Lee, XiaoFeng Wang, Nan Zhang, Heqing
Huang, Wei Zou, and Peng Liu. 2015. Finding unknown malice in 10 seconds:
Mass vetting for new threats at the google-play scale. In Proc. of the USENIX
Security Symposium (USENIX). 659–674.

[38] DrizzleRisk. 2021. DrizzleDumper. https://github.com/DrizzleRisk/drizzleDumper.

[39] Empirical Software Engineering (EMSE). [n.d.].
[40] William Enck, Machigar Ongtang, and Patrick McDaniel. 2009. On Lightweight

Mobile Phone Application Certification. In Proc. of the Conference on Computer
and Communications Security (CCS). 235–245.

[41] ESET. [n.d.]. https://www.welivesecurity.com/2017/02/22/sunny-chance-stolen-
credentials-malicious-weather-app-found-google-play/.

[42] ESET. [n.d.]. ESET. https://www.welivesecurity.com/2018/02/28/
cryptocurrency-scams-android/.

[43] Parvez Faruki, Ammar Bharmal, Vijay Laxmi, Vijay Ganmoor, Manoj Singh
Gaur, Mauro Conti, and Muttukrishnan Rajarajan. 2015. Android Security: A
Survey of Issues, Malware Penetration, and Defenses. IEEE Communications
Surveys Tutorials 17, 2 (2015), 998–1022.

[44] Adrienne Porter Felt, Matthew Finifter, Erika Chin, Steve Hanna, and David
Wagner. 2011. A Survey of Mobile Malware in the Wild. In Proc. of the CCS
Workshop on Security and Privacy in Smartphones and Mobile Devices (SPSM).
3–14.

[45] Jeanne Ferrante, Karl J Ottenstein, and Joe D Warren. 1987. The Program
Dependence Graph and Its Use in Optimization. Transactions on Programming
Languages and Systems (TOPLAS) 9, 3 (1987), 319–49.

[46] Yanick Fratantonio, Antonio Bianchi, William Robertson, Engin Kirda, Christo-
pher Kruegel, and Giovanni Vigna. 2016. TriggerScope: Towards Detecting
Logic Bombs in Android Applications. In Proc. of the Symposium on Security
and Privacy (S&P). 377–396.

[47] Yanick Fratantonio, Chenxiong Qian, Simon P Chung, and Wenke Lee. 2017.
Cloak and Dagger: From Two Permissions to Complete Control of the UI Feed-
back Loop. In Proc. of the Symposium on Security and Privacy (S&P). 1041–1057.

[48] Jun Gao, Li Li, Pingfan Kong, Tegawendé F Bissyandé, and Jacques Klein. 2019.
Should You Consider Adware as Malware in Your Study?. In Proc. of the Interna-
tional Conference on Software Analysis, Evolution and Reengineering (SANER).
604–608.

[49] Joshua Garcia, Mahmoud Hammad, and Sam Malek. 2018. Lightweight,
Obfuscation-Resilient Detection and Family Identification of Android Malware.
Transactions on Software Engineering and Methodology (TOSEM) 26, 3 (2018),
1–29.

[50] Google. 2021. FirebaseCloudMessaging. https://firebase.google.com/docs/cloud-
messaging.

[51] Alejandro Guerra-Manzanares, Hayretdin Bahsi, and Sven Nõmm. 2021. Kron-
oDroid: Time-Based Hybrid-Featured Dataset for Effective Android Malware
Detection and Characterization. Computers and Security (CS) 110 (2021), 1–38.

[52] Jianjun Huang, Xiangyu Zhang, Lin Tan, Peng Wang, and Bin Liang. 2014.
AsDroid: Detecting Stealthy Behaviors in Android Applications by User Interface
and Program Behavior Contradiction. In Proc. of the International Conference on
Software Engineering (ICSE). 1036–1046.

[53] E. Ouellet I. McShane, A. Litan and P. Bhajanka. [n.d.]. Magic Quadrant for End-
point Protection Platforms. https://www.gartner.com/en/documents/4001307.

[54] JetBrains. 2021. IntelliJ IDEA. https://www.jetbrains.com/idea/.
[55] Jiagu. 2021. Jiagu. https://jiagu.360.cn/.
[56] Joongyum Kim, Jung-hwan Park, and Sooel Son. 2020. The Abuser Inside Apps:

Finding the Culprit Committing Mobile Ad Fraud. In Proc. of the Network and
Distributed System Security Symposium (NDSS). 1–16.

[57] TaeGuen Kim, BooJoong Kang, Mina Rho, Sakir Sezer, and Eul Gyu Im. 2018.
A Multimodal Deep Learning Method for Android Malware Detection Using
Various Features. Transactions on Information Forensics and Security (TIFS) 14, 3
(2018), 773–788.

[58] Nicolas Kiss, Jean-François Lalande, Mourad Leslous, and Valérie Viet Triem
Tong. 2016. Kharon Dataset: Android Malware under a Microscope. In Proc. of
the Learning from Authoritative Security Experiment Results Workshop (LASER).
1–12.

[59] Arash Habibi Lashkari, Andi Fitriah A Kadir, Hugo Gonzalez, Kenneth FonMbah,
and Ali A Ghorbani. 2017. Towards a Network-based Framework for Android
Malware Detection and Characterization. In Proc. of the Annual Conference on
Privacy, Security and Trust (PST). 233–23309.

[60] Arash Habibi Lashkari, Andi Fitriah A Kadir, Laya Taheri, and Ali A Ghorbani.
2018. Toward Developing a Systematic Approach to Generate Benchmark An-
droid Malware Datasets and Classification. In Proc. of the International Carnahan
Conference on Security Technology (ICCST). 1–7.

[61] Li Li, Daoyuan Li, Tegawendé F Bissyandé, Jacques Klein, Yves Le Traon, David
Lo, and Lorenzo Cavallaro. 2017. Understanding Android App Piggybacking:
A Systematic Study of Malicious Code Grafting. Transactions on Information
Forensics and Security (TIFS) 12, 6 (2017), 1269–1284.

[62] Menghao Li, Wei Wang, Pei Wang, Shuai Wang, Dinghao Wu, Jian Liu, Rui Xue,
and Wei Huo. 2017. LibD: Scalable and Precise Third-Party Library Detection in
Android Markets. In Proc. of the International Conference on Software Engineering
(ICSE). 335–346.

[63] Martina Lindorfer, Matthias Neugschwandtner, Lukas Weichselbaum, Yanick
Fratantonio, Victor Van Der Veen, and Christian Platzer. 2014. Andrubis–
1,000,000 Apps Later: A View on Current Android Malware Behaviors. In Proc.
of the Workshop on Building Analysis Datasets and Gathering Experience Returns

https://doi.org/10.5281/zenodo.5376011
https://doi.org/10.5281/zenodo.5376011

Rotten Apples Spoil the Bunch: An Anatomy of Google Play Malware ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA

for Security (BADGERS). 3–17.
[64] Hongjiu Lu. 1995. ELF: From The Programmer’s Perspective. NYNEX Science &

Technology Inc (1995), 95.
[65] Samaneh Mahdavifar, Andi Fitriah Abdul Kadir, Rasool Fatemi, Dima Alhadidi,

and Ali A Ghorbani. 2020. Dynamic Android Malware Category Classification
using Semi-Supervised Deep Learning. In Proc. of the International Conference
on Dependable, Autonomic and Secure Computing, International Conference on
Pervasive Intelligence and Computing, International Conference on Cloud and
Big Data Computing, International Conference on Cyber Science and Technology
Congress (DASC/PiCom/CBDCom/CyberSciTech). 515–522.

[66] Enrico Mariconti, Lucky Onwuzurike, Panagiotis Andriotis, Emiliano De Cristo-
faro, Gordon Ross, and Gianluca Stringhini. 2017. MaMaDroid: Detecting An-
droid Malware by Building Markov Chains of Behavioral Models. In Proc. of the
Network and Distributed System Security Symposium (NDSS). 1–12.

[67] Palo Alto Networks. 2021. PluginPhantom: New Android Trojan Abuses
“DroidPlugin” Framework. https://unit42.paloaltonetworks.com/unit42-
pluginphantom-new-android-trojan-abuses-droidplugin-framework/.

[68] Xiang Pan, Yinzhi Cao, Xuechao Du, Boyuan He, Gan Fang, Rui Shao, and
Yan Chen. 2018. FlowCog: Context-aware Semantics Extraction and Analysis
of Information Flow Leaks in Android Apps. In Proc. of the USENIX Security
Symposium (USENIX). 1669–1685.

[69] Xiaorui Pan, Xueqiang Wang, Yue Duan, XiaoFeng Wang, and Heng Yin. 2017.
Dark Hazard: Learning-based, Large-Scale Discovery of Hidden Sensitive Oper-
ations in Android Apps. In Proc. of the Network and Distributed System Security
Symposium (NDSS). 1–15.

[70] Parkour. [n.d.]. Contagio Malware Dump. http://contagiodump.blogspot.com/.
[71] Feargus Pendlebury, Fabio Pierazzi, Roberto Jordaney, Johannes Kinder, and

Lorenzo Cavallaro. 2019. TESSERACT: Eliminating Experimental Bias in Mal-
ware Classification across Space and Time. In Proc. of the USENIX Security
Symposium (USENIX). 729–746.

[72] Sebastian Poeplau, Yanick Fratantonio, Antonio Bianchi, Christopher Kruegel,
and Giovanni Vigna. 2014. Execute This! Analyzing Unsafe and Malicious
Dynamic Code Loading in Android Applications. In Proc. of the Network and
Distributed System Security Symposium (NDSS). 23–26.

[73] Junyang Qiu, Jun Zhang, Wei Luo, Lei Pan, Surya Nepal, and Yang Xiang. 2020.
A Survey of Android Malware Detection with Deep Neural Models. Comput.
Surveys 53, 6 (2020), 1–36.

[74] Bahman Rashidi and Carol J Fung. 2015. A Survey of Android Security Threats
and Defenses. Journal of Wireless Mobile Networks, Ubiquitous Computing, and
Dependable Applications 6, 3 (2015), 3–35.

[75] Siegfried Rasthofer, Steven Arzt, Stefan Triller, andMichael Pradel. 2017. Making
Malory Behave Maliciously: Targeted Fuzzing of Android Execution Environ-
ments. In Proc. of the International Conference on Software Engineering (ICSE).
300–311.

[76] Hex Rays. 2021. IDA. https://hex-rays.com/ida-pro/.
[77] Borja Sanz, Igor Santos, Carlos Laorden, Xabier Ugarte-Pedrero, Pablo Garcia

Bringas, and Gonzalo Álvarez. 2013. PUMA: Permission Usage to Detect Mal-
ware in Android. In Proc. of the Joint Conference CISIS’12-ICEUTE’12-SOCO’12
Special Sessions. 289–298.

[78] Andrea Saracino, Daniele Sgandurra, Gianluca Dini, and Fabio Martinelli. 2016.
MADAM: Effective and Efficient Behavior-based Android Malware Detection
and Prevention. Transactions on Dependable and Secure Computing (TDSC) 15, 1
(2016), 83–97.

[79] Marcos Sebastián, Richard Rivera, Platon Kotzias, and Juan Caballero. 2016.
Avclass: A Tool for Massive Malware Labeling. In Proc. of the International
Symposium on Research in Attacks, Intrusions, and Defenses (RAID). 230–253.

[80] Zhiyong Shan, Iulian Neamtiu, and Raina Samuel. 2018. Self-Hiding Behavior
in Android Apps: Detection and Characterization. In Proc. of the International
Conference on Software Engineering (ICSE). 728–739.

[81] Virus Share. [n.d.]. https://virusshare.com.
[82] Luman Shi, Jiang Ming, Jianming Fu, Guojun Peng, Dongpeng Xu, Kun Gao, and

Xuanchen Pan. 2020. VAHunt: Warding Off New Repackaged Android Malware
in App-Virtualization’s Clothing. In Proc. of the Conference on Computer and
Communications Security (CCS). 535–549.

[83] skylot. 2021. JADX. https://github.com/skylot/jadx.
[84] Alireza Souri and Rahil Hosseini. 2018. A State-of-the-art Survey of Malware De-

tection Approaches Using Data Mining Techniques. Human-centric Computing
and Information Sciences 8, 1 (2018), 1–22.

[85] Tim Strazzere. 2021. Android Unpacker. https://github.com/strazzere/android-
unpacker.

[86] Guillermo Suarez-Tangil and Gianluca Stringhini. 2020. Eight Years of Rider
Measurement in the Android Malware Ecosystem. Transactions on Dependable

and Secure Computing (TDSC) (2020).
[87] Mingshen Sun, Xiaolei Li, John C.S. Lui, Richard T.B. Ma, and Zhenkai Liang.

2017. Monet: A User-Oriented Behavior-Based Malware Variants Detection
System for Android. Transactions on Information Forensics and Security (TIFS)
12, 5 (2017), 1103–1112.

[88] Kimberly Tam, Ali Feizollah, Nor Badrul Anuar, Rosli Salleh, and Lorenzo
Cavallaro. 2017. The Evolution of Android Malware and Android Analysis
Techniques. Comput. Surveys 49, 4 (2017), 1–41.

[89] Kimberly Tam, Salahuddin J Khan, Aristide Fattori, and Lorenzo Cavallaro. 2015.
CopperDroid: Automatic Reconstruction of Android Malware Behaviors. In Proc.
of the Network and Distributed System Security Symposium (NDSS). 1–15.

[90] Zhenhao Tang, Juan Zhai, Minxue Pan, Yousra Aafer, Shiqing Ma, Xiangyu
Zhang, and Jianhua Zhao. 2018. Dual-Force: Understanding WebView Malware
via Cross-Language Forced Execution. In Proc. of the International Conference
on Automated Software Engineering (ASE). 714–725.

[91] Transactions on Software Engineering (TSE). [n.d.].
[92] VirusTotal. 2021. VirusTotal. https://www.virustotal.com/home.
[93] Haoyu Wang, Junjun Si, Hao Li, and Yao Guo. 2019. RmvDroid: Towards a Reli-

able Android Malware Dataset with App Metadata. In Proc. of the International
Conference on Mining Software Repositories (MSR). 404–408.

[94] Liu Wang, Ren He, Haoyu Wang, Pengcheng Xia, Yuanchun Li, Lei Wu, Yajin
Zhou, Xiapu Luo, Yulei Sui, Yao Guo, et al. 2021. Beyond the virus: a first look
at coronavirus-themed Android malware. Empirical Software Engineering 26, 4
(2021), 1–38.

[95] Wei Wang, Meichen Zhao, Zhenzhen Gao, Guangquan Xu, Hequn Xian,
Yuanyuan Li, and Xiangliang Zhang. 2019. Constructing Features for Detecting
Android Malicious Applications: Issues, Taxonomy and Directions. IEEE Access
7 (2019), 67602–67631.

[96] Xing Wang, Wei Wang, Yongzhong He, Jiqiang Liu, Zhen Han, and Xiangliang
Zhang. 2017. Characterizing Android Apps’ Behavior for Effective Detection of
Malapps at Large Scale. Future Generation Computer Systems 75 (2017), 30–45.

[97] FengguoWei, Yuping Li, Sankardas Roy, Xinming Ou, andWu Zhou. 2017. Deep
Ground Truth Analysis of Current Android Malware. In Proc. of the International
Conference on Detection of Intrusions and Malware, and Vulnerability Assessment
(DIMVA). 252–276.

[98] Wong, Michelle Y and Lie, David. 2016. IntelliDroid: A Targeted Input Generator
for the Dynamic Analysis of Android Malware.. In Proc. of the Network and
Distributed System Security Symposium (NDSS). 1–15.

[99] Woxihuannisja. 2021. Bangcle. https://github.com/woxihuannisja/Bangcle.
[100] Pengcheng Xia, Haoyu Wang, Bowen Zhang, Ru Ji, Bingyu Gao, Lei Wu, Xiapu

Luo, and Guoai Xu. 2020. Characterizing cryptocurrency exchange scams.
Computers & Security 98 (2020), 101993.

[101] Wei Yang,Mukul R. Prasad, and Tao Xie. 2018. EnMobile: Entity-based Character-
ization and Analysis of Mobile Malware. In Proc. of the International Conference
on Software Engineering (ICSE). 384–394.

[102] Zhemin Yang, Min Yang, Yuan Zhang, Guofei Gu, Peng Ning, and X. Sean Wang.
2013. AppIntent: Analyzing Sensitive Data Transmission in Android for Privacy
Leakage Detection. In Proc. of the Conference on Computer and Communications
Security (CCS). 1043–1054.

[103] Yanfang Ye, Tao Li, Donald Adjeroh, and S. Sitharama Iyengar. 2017. A Survey
on Malware Detection Using Data Mining Techniques. Comput. Surveys 50, 3
(2017), 41:1–41:40.

[104] Jiexin Zhang, Alastair R Beresford, and Stephan A Kollmann. 2019. LibID:
Reliable Identification of Obfuscated Third-Party Android Libraries. In Proc. of
the International Symposium on Software Testing and Analysis (ISSTA). 55–65.

[105] Mu Zhang, Yue Duan, Heng Yin, and Zhiruo Zhao. 2014. Semantics-Aware
Android Malware Classification Using Weighted Contextual API Dependency
Graphs. In Proc. of the conference on Computer and Communications Security
(CCS). 1105–1116.

[106] Xiaohan Zhang, Yuan Zhang, Ming Zhong, Daizong Ding, Yinzhi Cao, Yukun
Zhang, Mi Zhang, and Min Yang. 2020. Enhancing State-of-the-art Classifiers
with API Semantics to Detect Evolved Android Malware. In Proc. of the Confer-
ence on Computer and Communications Security (CCS). 757–770.

[107] Yueqian Zhang, Xiapu Luo, and Haoyang Yin. 2015. Dexhunter: Toward Extract-
ing Hidden Code From Packed Android Applications. In Proc. of the European
Symposium on Research in Computer Security (ESORICS). 293–311.

[108] Yajin Zhou and Xuxian Jiang. 2012. Dissecting Android Malware: Characteri-
zation and Evolution. In Proc. of the Symposium on Security and Privacy (S&P).
95–109.

[109] Yajin Zhou, Zhi Wang, Wu Zhou, and Xuxian Jiang. 2012. Hey, You, Get Off
of my Market: Detecting Malicious Apps in Official and Alternative Android
Markets. In Proc. of the Network and Distributed System Security Symposium
(NDSS). 50–52.

	Abstract
	1 Introduction
	2 Methodology
	2.1 Building the Dataset
	2.2 Analyzing Malware Samples

	3 Malware Characterization
	3.1 Malware Characterization Schema
	3.2 Malware Characteristics

	4 Flow-based Malware Signature
	5 Discussion and Implications
	6 Limitations and Threats to Validity
	7 Related Work
	8 Conclusion
	References

